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Abstract

Questions: How is woody vegetation patchiness affected by rainfall, fire and

large herbivore biomass? Can we predict woody patchiness and cover over

large-scale environmental gradients?

Location: Hluhluwe-iMfolozi Park, South Africa.

Methods: We quantified variation in local patchiness as the lacunarity of

woody cover on satellite-derived images. Using Random Forest regression we

analysed how both average woody cover and its patchiness depend on annual

rainfall, fire frequency and grazer and browser metabolic biomass densities.

Results: Fire frequency and rainfall were the clearest predictors, whereas effects

of large herbivores onwoody vegetation were smaller andmore complex. Under

low rainfall conditions (500 mm�yr�1) trees had less total cover and were more

regularly spaced across the landscape (lower patchiness). Woody cover and veg-

etation patchiness increased with rainfall whereas fire frequency decreased

woody cover and further increased patchiness.

Conclusion: These results suggest a switch from competition between neigh-

bouring trees under low rainfall conditions towards benefits among neighbours

with increasing fire frequencies.Whereas overall woody cover and its patchiness

are two independent aspects of savanna woody vegetation patterns, both need

to be investigated to obtain a good understanding of the functioning and diver-

sity of savanna ecosystems.

Introduction

Problems of pattern and scale are central for the under-

standing of ecosystems (Levin 1992; Ritchie 2009). Savan-

nas are broadly characterized as tree–grass mixtures at the

landscape scale, but at finer scales they are heterogeneous

landscapes characterized by a continuous grass layer inter-

spersed with discontinuous patches of woody canopy

(Frost et al. 1986; Scholes & Archer 1997). This woody

cover can range from sparse but widespread trees or shrubs

to larger stretches of closed-canopy woodlands alternating

with pure grassland. The nature of spatial patchiness

(dispersed or aggregated) of woody canopy across the land-

scape strongly affects many community and ecosystem

processes, including nutrient cycling (Sitters et al. 2013,

2015), herbivore distributions (WallisDeVries et al. 1999;

Kie et al. 2002), fire percolation (Archibald et al. 2009;

Beckage et al. 2009; Schertzer et al. 2015), fire–herbivore
interactions (Kerby et al. 2007), predator–prey interac-

tions (Riginos & Grace 2008; Riginos 2015), soil erosion

(Reid et al. 1999) and evapotranspiration (Joffre & Rambal

1993). In turn, ecological processes shape the spatial pat-

terning of woody vegetation across the landscape. Given

the geographic extent and socio-economic importance of
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savannas (Frost et al. 1986; Scholes & Archer 1997), com-

bined with their anticipated sensitivity to climate and

land-use change (Scheiter & Higgins 2009; Hirota et al.

2010; Anadon et al. 2014; Midgley & Bond 2015), a thor-

ough understanding of the drivers of the main aspects of

spatial patterns of woody vegetation is urgently needed.

Spatial patterns in woody vegetation can be described

by two independent parameters: the coverage or amount

of woody species biomass per surface area at coarse spatial

scales (i.e. the tree–grass ratio) and the degree of local

patchiness or clustering of woody species across the land-

scape, given a particular total cover at the landscape scale.

Most research so far has investigated the determinants of

the landscape-level percentage woody cover, yielding

important insights into the functioning of savanna ecosys-

tems (Sankaran et al. 2005, 2008; Bucini & Hanan 2007;

Staver et al. 2011; Lehmann et al. 2014). Generally,

woody cover increases along regional rainfall gradients,

whereas fire negatively affects woody cover. Interestingly,

this negative effect of fire on woody cover becomes stron-

ger at higher rainfall (Bucini & Hanan 2007; Bond 2008;

Lehmann et al. 2014), due to increased fire frequency and

intensity as a result of increased fuel loads (more dead grass

left standing at the start of the dry season). Therefore,

grasslands and forests can form two alternative stable

states at higher amounts of annual rainfall (1000–
2500 mm�yr�1; Staver et al. 2011). Soil nutrients, soil tex-

ture and large grazer and browser biomass have also been

found to significantly affect woody cover, but effect sizes

are generally much smaller (Sankaran et al. 2005, 2008).

In contrast to understanding of the determinants of

overall woody cover, insight into the determinants of its

local patchiness remains limited. Nevertheless, this patchi-

ness, especially patch size, is an important landscape char-

acteristic, as the strength of local feedback mechanisms

generally increase non-linearly with woody patch size

(Ludwig et al. 2000). For example, as woody patch size

increases, important resources, like nutrients and water,

become increasingly concentrated inside those patches

(Ludwig et al. 2000). Similarly, woody species inside larger

patches are better protected against fire as trees jointly out-

shade grasses (Hochberg et al. 1994). Therefore, better

understanding of the determinants of woody patchiness is

now needed to complement insights on the drivers of total

woody cover.

Spatial investigations of ecological phenomena, such as

woody cover distributions, can be dependent on the spatial

scale (or measurement resolution) and extent of the obser-

vations (Turner 1989) or can be independent of this, e.g. in

case of fractal patterns (Ritchie & Olff 1999). Spatial variance

generally decreases with scale, resulting in higher pre-

dictability of observed patterns at coarse resolution (Wiens

1989). Furthermore, mechanisms and pattern types can be

scale-dependent (Saab 1999; Kie et al. 2002), and predictor

variables might operate at different spatial scales (Levin

1992). Herbivore effects on trees and shrubs can be very

localized, whereas fire and rainfall generally perform at

much coarser spatial scales (Frost et al. 1986). Therefore,

testing the robustness of conclusions on drivers of spatial pat-

terns across different spatial scales is critical (Wiens 1989).

Here, we investigate how patchiness of woody vegeta-

tion is affected by annual rainfall, fire and large grazer and

browser metabolic biomass densities in Hluhluwe-iMfolozi

Park, South Africa. In addition, we study how these factors

affect overall woody cover. We used park-wide maps of

woody vegetation distributions (resolution 0.5 m), derived

from satellite imagery, and investigated the spatial patterns

in woody vegetation at four spatial resolutions (100, 250,

500 and 1000 m) to examine pattern robustness across

spatial scales. Besides identifying the determinants of

woody vegetation patchiness, the main objective of this

study, we also analysed determinants of percentage woody

cover to enable a comparison with previous studies. Last,

we used obtained model results to predict woody patchi-

ness and cover for the whole park, and compared those

with observed patterns of woody vegetation.

Methods

Study site

This study was conducted in Hluhluwe-iMfolozi Park

(HiP), South Africa. This 900 km2 game reserve hosts a

variety of large herbivores that are present in high num-

bers (Waldram et al. 2008). Mean annual rainfall is corre-

lated with altitude and ranges from ca. 500 mm in

iMfolozi to 900 mm in Hluhluwe (Balfour & Howison

2002). Vegetation structure varies from open grasslands

and thickets to closed, fine-leaved and broad-leaved wood-

lands (Whateley & Porter 1983). On average, 26% of the

park is burned annually, and the mean fire return period is

3.8 yr (Balfour & Howison 2002).

Woody cover

Woody cover distribution for HiP was estimated using

satellite-derived colour images (26 Mar 2014 for iMfolozi

and 8 May 2014 for Hluhluwe, ca. 0.5-m resolution) from

Google Earth using Google Earth Pro (Google 2015. Hluh-

luwe-iMfolozi Park, South Africa. 280 130 20.74”S, 310 570

02.45”E, Eye alt 78.06 km. Digital Globe 2015. Available at

https://www.earth.google.com. Accessed 26 March 2014

and 8 May 2014). We used the green band to distinguish

between woody and non-woody vegetation; trees and

shrubs generally show higher greenness than herbaceous

vegetation. We visually investigated different cut-off val-

ues for high greenness, and found that a threshold of 95
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[out of the relative colour scale of 0–255 (RGB)] best repre-
sented the observed woody patterns when compared with

the satellite-derived colour image. This threshold is some-

what arbitrary, and the percentage woody cover observed

would increase with a higher threshold value. Neverthe-

less, patterns of woody cover distributions for different cut-

off values are highly correlated and only differ slightly

quantitatively, whereas observed levels of patchiness are

qualitatively similar (see Fig. 1). Therefore, the actual

choice of threshold value does not affect our conclusions.

Rainfall

A 180-m resolution rainfall map (range: 504–
862 mm�yr�1) for the park was used based on ground sta-

tions and regression kriging, with methods described in

Veldhuis et al. (2014).

Fire frequency and return interval

Annual recordings by park rangers (ground-based hand-

drawn maps) of areas burned between 1955 and 2011

were digitized and rasterized into 1-ha (0.01 km2) pixels

(Balfour & Howison 2002). Subsequently, these layers of

annual fire extent were used to determine fire return

interval (in years) and fire frequencies (number of burns

between 1955–2011) for the whole park (100-m resolu-

tion).

Dung counts

Dung counts were used to estimate large herbivore

abundance (Cromsigt et al. 2009a,b). We used 24 fixed

line transects from min. 3.9 to max. 10.4 km length

that are used biannually by observation teams to moni-

tor the abundance of all large herbivore species within

the park (Fig. 2; see Cromsigt et al. 2009a for more

details on transect methods). Dung counts were con-

ducted by observation teams between Oct and Nov

2014, recording the number of all dung pellet groups

for all herbivore species larger than hare on and within

1 m on each side of the transect. Pellet groups were

summed per species for every 5 m of transect length

and their position was georeferenced. For white rhino-

ceros, that mostly defecate in middens, all middens visi-

ble from the transect were counted.

Fig. 1. Google Earth satellite images (provided by DigitalGlobe, 26-3-2014 and 8-5-2014) and three woody cover classifications based on different

threshold cut-off values for the green band (90, 95, 100), where a cut-off values of 90 means that all values <90 are classified as woody. Four landscapes,

characterizing the extremes found in terms of landscape structure are shown. (a) Low woody cover and low normalized lacunarity. (b) Low woody cover

and high normalized lacunarity. (c) High woody cover and low normalized lacunarity. (d) High woody cover and high normalized lacunarity. Woody cover

estimates fromMODIS are given for comparison. WC = woody cover, L* = normalized lacunarity.
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Spatial scale and variables

We created rectangular polygons covering 50 m on both

sides of each transect (100 m total width) and with differ-

ent lengths (100, 250, 500 and 1000 m) to investigate the

effect of spatial scale on patchiness estimates (Fig. 2) using

ArcGIS Desktop 10.2, ESRI, Redlands, CA, US. Within

each polygon we extracted mean rainfall, fire frequencies

and fire return interval from the obtained maps (see

above). To obtain an estimate of herbivore use for each

polygon we summed all dung counts per herbivore species

per polygon and combined this value (used as a relative

measure of herbivore density) with the total number of

individuals of that species within HiP (absolute herbivore

densities; Census data 2014, Ezemvelo KZN Wildlife,

unpubl), assuming that the average number of dung

counts reflected average species densities across the park,

and that the transects are a representative sample of the

different habitats of the park (Fig. 2). We divided the total

number of each herbivore species (Nt) by the total area of

the park (At = 90 000 ha) 9 the area covered by the poly-

gons (Ap) for each spatial scale, representing the number of

animals that would occupy the area covered by the poly-

gons. For each species, that number of animals was then

divided by the total number of dung counts (Dt) (repre-

senting the number of animals per dung count) 9 the

dung counts for each polygon (Dp) (representing the num-

ber of animals per polygon). This gave us the number of

individuals (Np) for each species for each polygon follow-

ing: Np ¼ ðNt=AtÞ � Ap � ðDp=DtÞ. The obtained values of

animals per polygon were then expressed as metabolic

biomass density MDB (in kg0.75�ha�1) for each species as

MBD = ðNp � B0:75Þ=Ap, where Np is the count of a species

in a specific polygon, B is the body mass per individual of

that species (kg), and Ap is the polygon area (ha). The body

masses for different species (average over sexes and life

stages) were taken from Smith et al. (2003). We then

summed the MDBs of grazers and browsers to obtain an

estimate of area usage by both herbivore functional

groups. African buffalo (Syncerus caffer), warthog (Phaco-

choerus africanus), blue wildebeest (Connochaetes taurinus),

white rhinoceros (Ceratotherium simum) and Burchell’s

zebra (Equus quagga) were treated as obligate grazers,

while grey duiker (Sylvicapra grimmia), giraffe (Giraffa came-

lopardalis), greater kudu (Tragelaphus strepsiceros) and black

rhinoceros (Diceros bicornis) were identified as obligate

browsers (Codron & Codron 2009). African elephant (Lox-

odonta africana) was assumed to be a mixed feeder [50%

grazer, 50% browser; Codron et al. 2011)]. Impala (Aepyc-

eros melampus) was considered a mixed feeder, but as a

preferential grazer (75% grazer, 25% browser) and nyala

(Tragelaphus angasii) a mixed feeder, as a preferred browser

(25% grazer, 75% browser) based on stable isotope analy-

ses (Botha & Stock 2005; Codron & Codron 2009).

The average woody cover (%) was calculated as the

mean of all pixel values of the woody cover map within

each polygon using ArcGIS Desktop (ESRI), ranging

between 0 and 1, where 1 denotes 100% woody cover.

Patchiness of woody vegetation was calculated as the lacu-

narity of the spatial pattern (Mandelbrot 1983; Allain &

Cloitre 1991; Plotnick et al. 1996). Lacunarity is a measure

for how a pattern fills space, where patterns with more

Fig. 2. Outline of Hluluwe-iMfolozi park showing the positioning of the 24 transects and enlargements of a small area to display the study design of the

four different spatial scales.
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and larger gaps generally have a larger lacunarity. Stem-

ming from the Latin lacuna (gap), a forest with more or lar-

ger gaps would have a higher lacunarity. For this we used

a gliding box algorithm, with box sizes of r = 1, 3, 5, 9, 17,

33 and 65 (1r is approximately 0.5 m). Lacunarity can be

expressed as L rð Þ ¼ ðs2s ðrÞ=sðrÞ2Þ þ 1 in which s(r) and s2s ðrÞ
represent the mean and variance of the pixel values for

box size r, respectively (Plotnick et al. 1996). Therefore,

lacunarity is dependent on, in our case, the percentage

woody cover. The lacunarity parameter therefore needs to

be normalized, to acquire two independent measures of

woody vegetation patterns. We therefore follow the

approach of Roy et al. (2010), normalizing the lacunarity

parameter as L� rð Þ ¼ ðL rð Þ � 1Þ=ð1=u� 1Þ where L*(r) is

the normalized lacunarity at box size r, φ is the percentage

woody cover (01) and thus 1/φ is the lacunarity at box size

1.We then plot the normalized lacunarity curves as a func-

tion of box size (see Appendix S1 for the curves of the four

examples in Fig. 1). To obtain a single value for normalized

lacunarity for each polygon we took the average of box

sizes 3, 5, 9, 17, 33 and 65, resulting in values ranging

between 0 and 1, with higher values representing a higher

degree of woody patchiness (i.e. clustered) and lower val-

ues representing regularly spaced woody vegetation (see

Fig. 1). Intermediate values suggest random patterns in

woody distributions. Woody cover and normalized lacu-

narity were not related to each other (LM: P = 0.31,

R2 = 0.0005; Appendix S2).

Data analysis

We analysed the dependence of the normalized lacunarity

and average woody cover on rainfall, fire, large grazer and

browser metabolic biomass at all four spatial scales (100,

250, 500 and 1000 m). We started the analysis with fitting

variograms using standard routines in the ‘geoR’ package

(Appendix S3; Ribeiro & Diggle 2001) to determine the

extent of spatial autocorrelation of the dependent vari-

ables.

We then analysed relationships between our response

variables (normalized lacunarity and woody cover) and

the four predictors of woody cover (i.e. rain, fire, grazer

MBD and browser MBD) using Random Forest regres-

sion (Regression forests), package ‘randomForest’ (Liaw

& Wiener 2002). Random forest (RF) regression is a

machine learning method that operates through con-

struction of a large number of regression trees by ran-

domly taking subsets of the data and predictor variables

(Breiman 2001). The large benefit over conventional

techniques such as standard linear model multiple

regression is that regression trees accommodate non-

linear relationships between predictor and response

variables and are invariant to monotonic changes in,

and correlations between, the explanatory variables. We

calculated 2000 trees for each spatial scale using 90% of

the data and tested their goodness of fit on the remain-

ing 10%. RF models are less easily visualized and inter-

preted than standard Regression Trees but do provide

the opportunity to determine the importance of each

predictor variable and partial dependence. The impor-

tance of each variable calculated using permutation tests,

in which the values of a variable is randomly rear-

ranged, followed by calculation of the increase in mean

squared error; the larger this increase, the more impor-

tant the variable. Partial dependence plots (PDP) show

the response to a predictor variable averaged over the

distribution of the other predictors. These PDPs show

the change in the average predicted value over the

range of a specific explanatory variable. Therefore, PDPs

are especially valuable when multiple explanatory vari-

ables are correlated, as their partial nature describes the

effects of the independent variables.

As RF is a relative new technique (especially in ecol-

ogy), its sensitivity to spatial autocorrelation has not

been rigorously tested. Therefore, we also analysed our

data using LMM, for which techniques to incorporate

spatial autocorrelation have been reliably demonstrated,

to increase the robustness of our statistical analysis.

Location was therefore included as random variable,

correcting for the spatial autocorrelation structure using

the ‘corRatio’ (normalized lacunarity) and the ‘corExp’

(woody cover) functions, from the ‘nlme’ package in R

(Zuur et al. 2009; R Foundation for Statistical Comput-

ing, Vienna, AT). These correlation structures were cho-

sen based on AIC criteria. We started with full models

with all four explanatory variables and their two-way

interactions. Backward step-wise model selection proce-

dures were used based on the BIC criteria (Schwarz

1978). We chose BIC over AIC criteria because of the

large sample sizes (n = 1784 for 100-m resolution), and

BIC tends to be more conservative against over-fitting.

Last, we used these RF models based on the transect

data to make park-wide predictions (500-m resolution) of

normalized lacunarity and woody cover based on our

park-wide maps of rainfall and fire frequencies. Subse-

quently, these maps were validated with the observed nor-

malized lacunarity (Google Earth) and woody cover (based

on Google Earth and MODIS). Moderate resolution imag-

ing spectroradiometer (MODIS) satellite measurements of

canopy reflectance were obtained from the MOD44B Col-

lection 5 product (Townshend et al. 2011). Prediction

accuracy was determined by intersecting 1000 randomly

generated points with all maps and subsequently linear

regression models were constructed between predicted

and observed values. All statistical analyses were executed

in R v 3.2.2.
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Results

Patchiness of woody vegetation

Relative importance values for normalized lacunarity (i.e.

degree of patchiness) identified fire return interval as the

most important predictor variable for all spatial scales

(Table 1). Rainfall was also an important predictor, almost

as important as fire at finer spatial scales. Grazer MBD was

also significant but its importance was much smaller,

whereas browsers MBD did not affect normalized lacunar-

ity at all but the finest scale (100 m). The overall variance

explained by the RF model increased towards coarser reso-

lutions from 10% (100 m) to 31% (1000 m) based on

cross-validation. Linear models generally gave similar

results to RF models, with the exception of rainfall at finer

scales, where it became non-significant (Table 2). An

explanation for this discrepancy can be found in the partial

dependence of normalized lacunarity on the different pre-

dictor variables. For coarser spatial scales (500 and

1000 m) there was a more or less linear positive depen-

dence on rainfall, indicating that woody vegetation

became more patchy towards higher rainfall (Fig. 3).

However, at the two finer scales (100 and 250 m) this

trend became non-linear, with no apparent effect between

500 and 650 mm, then a steep increase towards 700 mm,

followed again by no effect between 700 and 850 mm

rainfall yr�1. The linear models used likely had problems

capturing these non-linear effects. Furthermore, normal-

ized lacunarity decreased with fire return interval between

2 and 5 yr, after which it had no apparent effect. Grazers

had a positive effect on normalized lacunarity and brow-

sers showed a complex non-linear relationship, which

matches their low importance in explaining normalized

lacunarity.

Percentagewoody cover

Rainfall was the most important predictor of percentage

woody cover, followed by fire return interval, browser

MBD and grazer MBD at smaller spatial scales (100 and

250 m; Table 1). In general, the patterns were similar

when analysed at different spatial scales. The proportion of

variation explained was higher than for normalized lacu-

narity and similar across spatial scales (ca. 40%), following

Table 1. Relative importance values of the different predictor variables for explaining normalized lacunarity and woody cover. Importance values repre-

sent the percentage increase in mean squared error when values for the particular predictor are randomly assigned throughout the data set. To obtain rela-

tive importance values, the most important predictor was assigned a value of 100 and the others were scaled appropriately. Models represent 2000

random trees based on 90% of the data set and were validated on the remaining 10% of the data set to obtain a measure of goodness of fit (% Var Exp).

Normalized Lacunarity Woody Cover

100 m 250 m 500 m 1000 m 100 m 250 m 500 m 1000 m

Annual Rainfall 96 98 76 75 100 100 100 100

Fire Return Interval 100 100 100 100 91 87 63 53

Grazer MBD 40 9 39 34 18 14 16 15

Browser MBD 28 �4 4 �9 51 65 74 100

%Var Exp 10 13 24 31 42 35 44 39

Table 2. Results of linear models with spatial autocorrelation structure for woody cover and normalized lacunarity for the four spatial scales of the study.

Standardized coefficients are given for all significant predictors obtained by backwards steps-wise procedure and comparison of BIC values. Marginal and

conditional R2 were estimated following Johnson (2014).

Normalized Lacunarity Woody Cover

100 m 250 m 500 m 1000 m 100 m 250 m 500 m 1000 m

Annual Rainfall n.s. n.s. 0.027 0.042 0.079 0.094 0.118 0.019

Fire Frequency 0.019 0.036 0.033 0.030 �0.088 �0.088 �0.097 �0.092

Grazer MBD 0.006 0.009 0.017 0.021 n.s. n.s. n.s. n.s.

Browser MBD n.s. n.s. n.s. n.s. 0.013 0.039 0.055 0.127

Rainfall 9 Fire n.s. n.s. n.s. n.s. �0.030 �0.023 n.s. n.s.

Rainfall 9 Grazer n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Rainfall 9 Browser n.s. n.s. n.s. n.s. 0.011 0.017 0.023 0.058

Fire 9 Grazer n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Fire 9 Browser n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Grazer 9 Browser n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.

Marginal R2 0.04 0.13 0.26 0.37 0.23 0.33 0.45 0.51

Conditional R2 0.05 0.14 0.28 0.40 0.23 0.34 0.46 0.53

BIC �4077 �1341 �607 �272 �2202 �658 �323 �146
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cross-validation. Linear models also revealed rainfall, fire

return interval and browser MBD as significant predictor

variables for woody cover (Table 2). However, the pres-

ence of significant interaction terms made it hard to deter-

mine their relative importance. The significant negative

interaction between rainfall and fire indicates a stronger

negative effect of fire on woody cover under increased

rainfall conditions (at 100 m and 252 m resolution). Simi-

larly, browser MBD showed a stronger positive relation-

ship with woody cover under high rainfall conditions.

Grazer MBD was identified as non-significant, in contrast

to the RF models. Partial dependence plots showed clear

patterns between woody cover and the four predictor vari-

ables that were similar at all spatial scales (Fig. 4). Woody

cover increased linearly with rainfall. Fire return interval

had a positive effect on woody cover between 2 and 5 yr,

whereas it was no longer affected by a further increase in

years between fires. Grazer MBD negatively influenced

woody cover at low to intermediate densities, after which

woody cover again increased. Browser MBDwas positively

related to woody cover, suggesting an opposite causal

direction, i.e. woody cover determined the distribution of

browsers instead of vice versa.

Park-wide predictions and observations

Fire and rainfall were thus identified as the most important

predictors of both normalized lacunarity and percentage

woody cover. Therefore, we were able to use the park-

wide maps of annual rainfall and fire frequency as input

for the obtained RF models created using the transect data

to extrapolate the observed patchiness outside the tran-

sects, enabling a verification of the predictions outside the

study region. We used Google Earth and MODIS (only

woody cover percentage) for this (Fig. 5). Landscapes with

high normalized lacunarity (green areas upper panel, high

Fig. 3. Partial dependence of normalized lacunarity on rainfall (mm�yr�1), fire return interval (years), grazer and browser metabolic biomass densities

(kg0.75�ha�1) at four different resolutions (100, 250, 500 and 1000 m). The plots show the relationship between the response and each of the explanatory

variables, corrected for the other predictors. Deciles of the data are presented as small black tick marks on the x-axis. Normalized lacunarity increased with

rainfall between 600 and 750 mm�yr�1, while it decreased with fire return interval between 2 and 4 yr, with no effect for higher return intervals.

Normalized lacunarity appears to be positively related to grazer MBD, whereas it showed a complex non-linear relationship with browsers MBD.

7
Journal of Vegetation Science
Doi: 10.1111/jvs.12461© 2016 International Association for Vegetation Science

M.P. Veldhuis et al. Determinants of woody vegetation patchiness



amount of clustering) are found in the parts of the park

that exhibit a combination of high rainfall and high fire

frequency. High percentage woody cover is found under

the high rainfall conditions with low fire frequencies in the

north of the park and intermediate woody cover is found

in the Hluhluwe basin. These predictions correspond well

to the observations from Google Earth and MODIS. It is

important to note that the maps of normalized lacunarity

and percentage woody cover are not equal, indicating that

both variables are independent from each other and all

four possible combinations of high/low rainfall and high/

low fire frequency can be foundwithin the park and repre-

sent very different landscapes (Fig. 1).

Discussion

The main objective of this study was to investigate the

determinants of patchiness of woody vegetation, in

addition to drivers of average woody cover. Fire and rain-

fall were identified as the most important predictors, both

increasing woody vegetation patchiness. Grazers also sig-

nificantly increased patchiness, although their effect size

was much smaller. Furthermore, percentage woody cover

increased with rainfall, whereas fire negatively affected

woody cover. Browsers showed a strong positive relation-

ship with woody cover. Patterns were generally robust

across spatial scales (between 100 and 1000 m). Further-

more, results from linear models (including spatial auto-

correlation) were overall similar to RF models, although

they failed to identify non-linear relationships.

Shifts inwoody vegetation patterns across the rainfall

gradient

Under low rainfall conditions, we found decreased woody

cover that was more regularly spaced across the landscape.

Fig. 4. Partial dependence of woody cover on rainfall (mm�yr�1), fire return interval (years), grazer and browser metabolic biomass densities (kg0.75�ha�1)

at four different resolutions (100, 250, 500 and 1000 m). Woody cover increases with rainfall between 500 and 800 mm�yr�1. Woody cover also increases

with fire return intervals between 2 and 5 yr, but has no effect above the threshold of 5 yr. Woody cover decreased between low and intermediate grazer

MBD but increased again with higher grazer MBDs. Browser MBD was positively associated with woody cover up to about 15 kg0.75�ha�1, above which

there was no longer apparent effect. Patterns were similar for all resolutions.
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This regular spacing, or over-dispersion, of trees and

bushes can be interpreted as an outcome of competitive

interactions (Pielou 1962; Greig-Smith 1983). Below-

ground competition for water under these water-limited

conditions is not unlikely where savanna trees often have

root systems that extend laterally well beyond their crowns

(Belsky 1994; Scholes & Archer 1997; Schenk & Jackson

2002), and plants in arid environments tend to have

increased lateral root spread (Casper et al. 2003). Indeed,

empirical evidence for tree–tree competition generally

comes from more arid savannas (<650 mm MPA; e.g.

Smith & Goodman 1986; Meyer et al. 2008; Moustakas

et al. 2008). Furthermore, not surprisingly, percentage

average woody cover increased with rainfall (Sankaran

et al. 2005, 2008) and woody vegetation patchiness

increased, probably as a result of reduced competition for

water between trees. Additionally, fire decreased woody

cover (Bond et al. 2003; Bond 2008) and further increased

patchiness of woody vegetation, which is consistent with

previous findings (Barot et al. 1999; Kennedy & Potgieter

2003; Moustakas 2015). This clustering of trees with

increased fire frequency suggests tree–tree facilitation in

protection against fire (Bacelar et al. 2014; Moustakas

2015). The resulting landscape under high rainfall condi-

tions hosts two well-known alternative stable states, self-

stabilizing through positive feedback mechanisms (Van

Langevelde et al. 2003; D’Odorico et al. 2006; Hanan et al.

2008; Staver et al. 2011): (1) large patches of closed-

canopy woodlands that protect themselves from fire; and

(2) large open grassland areas where frequent burning

prevents woody establishment.

Large herbivores and the need for experimental testing

We found a clear positive relationship between browser

MBD and woody cover. However, three recent studies

investigated the effect of herbivore exclusion on woody

biomass, and all conclude strong negative effects of brow-

sers on woody biomass (Sankaran et al. 2013; Staver &

Bond 2014) and seed production (Goheen et al. 2010).

This suggests that the positive relationship found in this

study is merely a result of woody cover increasing browser

MBD instead of vice versa. Grazer MBD showed a

humped-shaped relationship with woody cover (in agree-

ment with Sankaran et al. 2005), possibly as a result of an

interaction effect not accounted for in our data set. For

example, grazers might avoid patches with high woody

cover due to reduced food and increased predation risk

(Riginos & Grace 2008; Riginos 2015), but at the same time

increase woody cover at high biomass densities due to

reduced tree–grass competition and reduced fire effects

(Cramer et al. 2010; February et al. 2013).

Fig. 5. (a) Maps of fire frequency and annual rainfall for Hluhluwe-iMfolozi Park. (b) Predicted and observed normalized lacunarity (top row) and woody

cover (bottom row) for Hluhluwe-iMfolozi Park. Predictions were modelled by Random Forest regression based on data from 24 transects across the park,

followed by regression-kriging based on rainfall and fire frequency maps for the park. Observed maps were constructed using Google Earth and MODIS.

R2 denotes the explained variance of the observed map with our predicted values.
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Grazer MBD showed a positive linear relationship with

normalized lacunarity, indicating increased clustering of

woody species with high grazer densities. Few studies have

experimentally tested the effect of grazers onwoody patch-

iness, but large grazers seem to decrease the clustering of

woody individuals (Seifan & Kadmon 2006; Browning

et al. 2014). This is the opposite of our findings, suggesting

it is more likely that grazers avoided patches with regularly

spaced woody vegetation instead of instigating clustered

woody vegetation patterns. Furthermore, normalized lacu-

narity first increased with browser MBD and subsequently

decreased; it is not clear what caused this hump-shaped

pattern.

An alternative explanation (apart from interaction

effects) for the humped-shaped relationships found in this

study (both grazer MBD with woody cover and browser

MBD with normalized lacunarity) might be found in the

intermediate disturbance hypothesis (IDH) or the stress

gradient hypothesis (SGH). Both IDH (Grime 1973;

Wilkinson 1999) and SGH (Michalet et al. 2006; Kawai &

Tokeshi 2007) identify hump-backed patterns along gradi-

ents of disturbance and stress, respectively. Changes in

interaction strength and sign across gradients of abiotic

conditions, herbivore densities and fire frequencies, which

are the causal mechanisms behind these patterns, are

poorly studied in African savanna ecosystems and deserve

further investigation.

Conclusion

Overall, our study identified fire frequency and annual

rainfall as the most important determinants of woody

vegetation patchiness across multiple spatial scales

(100–1000 m). Under low rainfall (500 mm�yr�1)

woody species were more regularly distributed across

the landscape. With increasing rainfall (900 mm�yr�1),

not only percentage woody cover increased, but also

the patchiness of woody vegetation, which was further

increased by more frequent fires. Large herbivores only

had a limited effect on woody patchiness (and cover)

and showed mixed relationships with both cover and

patchiness. Woody cover and patchiness are two sepa-

rate aspects and should both be taken into account to

describe the patterns in woody vegetation.
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